Note

Stereoselective synthesis of deoxyhexopyranosides and deoxyhexopyranosid-2-uloses from 2-hydroxyglycal-derived precursors

Oscar Varela, Griselda M. De Fina and Rosa M. de Lederkremer

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428-Buenos Aires (Argentina)

(Received November 19th, 1992; accepted March 12th, 1993)

Previous work from our laboratory has shown that 2-hydroxyglycal esters, readily available from the corresponding glycosyl bromides¹, react with alcohols in the presence of N-iodosuccinimide¹ or tin(IV) chloride² to give diastereoselectively the α anomers of alkyl 3-deoxyhex-2-enopyranosides¹ (for example 1) and alkyl 3,4-dideoxy-3-enopyranosid-2-uloses^{1,2} (3 and 4) with high yields. We now report the conversion, by simple and highly stereoselective reactions, of these derivatives into 3-deoxy, 3,4-dideoxy, and 3,4-unsaturated hexopyranosides, and 3,4-dideoxyhex-2-uloses.

Catalytic hydrogenation (10% Pd-C) of 2-propyl 2,4,6-tri-O-acetyl-3-deoxy- α -D-erythro-hex-2-enopyranoside (1) proceeded with excellent diastereofacial selectivity to give 85% of the 3-deoxyhexoside 2 having the ribo configuration. The structure of 2 was deduced from the ¹H NMR coupling constants ($J_{1,2}$ 3.6, $J_{2,3}$ 5.5, and $J_{2,3}$, 11.2 Hz; Table I) which agreed with the J values calculated by applying the additivity rules³ for an ideal 4C_1 conformation of the 3-deoxy- α -D-ribo-hexopyranoside ($J_{1,2}$ 3.6, $J_{2,3}$ 4.9 and $J_{2,3}$, 11.5 Hz). Assignment of the 13 C NMR spectrum of 2 (Table II) was made by comparison with that reported⁴ for methyl 3-deoxy- α -D-ribo-hexopyranoside, by taking into account the effect of acylation on the individual chemical shifts⁵.

The high diastereofacial selectivity observed for the saturation of the double bond of 1 may be explained by accepting that this compound reacts in the favored ${}^{\circ}H_{5}(D)$ conformation^{1,6}, which satisfies two stereolectronic requirements: the anomeric and the allylic effects. The quasiaxially oriented anomeric isopropyl group would induce the addition of hydrogen from the opposite β face, resulting in the R configuration at C-2. Lichtenthaler and co-workers⁷ have also observed anomeric stereocontrol in addition reactions occurring on a vicinal carbonyl group. In contrast, Ferrier et al.⁸ reported that hydrogenation of 1,2,4,6-tetra-O-acetyl-3-

TABLE I ${}^{1}H \ NMR \ data \ (\delta \ \mbox{in ppm}, \ J \ \mbox{in Hz}) \ \mbox{for compounds 2 and 5-11}$

Compound	H-1	H-2	Е-Н	H-3′	H-4, H-4'	H-5	H-6, H-6′	$J_{1,2}$	J _{2,3}	$J_{1,2}$ $J_{2,3}$ $J_{2,3'}$ $J_{3,4}$	$J_{3,4}$	$J_{3',4}$
2	5.05	4.80	2.20	1.95	4.80	4.00	← 4.20 →	3.6	5.5	11.2	5.5	11.0
ĸ	4.70		2.70	2.34	← 1.96 →	4.58	← 4.10 →				11.0	3.0
9	5.38	5.26	5.86		5.72	4.46	← 4.17 →	4.1			11.0	
7	5.08	4.76		2.10-	.0.66 a	1	← 4.15-4.00 →	3.0	5.0	11.0		
œ	4.88	3.80		2.10-	2.10-1.40	1	.80-3.60 ─	3.6				
6	2.00	4.70		2.10-	2.10-1.50	1	4.08-3.90	3.5	5.8	10.6		
10	6.22	4.93		2.12-	2.12-1.60	1	4.15-4.00	3.3	6.5	10.0		
11	89.5	4.76		2.17-	2.17-1.40	73.86	← 4.0 <i>7</i> →	8.0	6.3	10.2		
a Overlapped	with the H-	the H-cholestanyl										

Compound	C-1	C-2	C-3	C-4	C-5	C-6
2	93.2	67.8 *	28.7	65.9	67.6 *	62.3
5	98.0	201.9	34.7 *	29.2 *	66.2	65.7
6	93.5	66.6	128.0 *	124.2 *	66.6	65.4
7	94.4	70.1	а	а	66.2 *	66.0 *
8	96.3	68.7	26.0 *	27.0 *	67.7	65.3
9	94.3	70.1	23.2 *	26.6 *	66.3 *	66.0 *
10	89.4	68.3	22.7 *	26.0 *	68.3	65.9
11	93.4	68.3	25.6 *	27.0 *	74.0	65.4

TABLE II 13 C NMR chemical shift values (δ in ppm) for compounds 2 and 5-11

deoxy- α -D-erythro-hex-2-enopyranose with 5% Pd-BaSO₄ afforded a 1.7:1 mixture of 3-deoxyhexoses having the *ribo* and arabino configurations. The highly selective hydrogenation of 1 may be attributed to the steric hindrance at the α face, caused by the anomeric isopropyl substituent, which is bulkier than an acetyl group.

In order to prepare the corresponding 3,4-dideoxyglycos-2-ulose derivatives, the hydrogenation of alkyl hex-3-enopyranosid-2-uloses was also investigated. Thus, hydrogenation of compound 1 3 over 10% Pd-C afforded 2-propyl 6-O-acetyl-3,4-dideoxy- α -D-glycero-hexopyranosid-2-ulose (5) in 87% yield. The 13 C NMR spectrum of 5 showed signals for the C-2 carbonyl group (201.9 ppm), the anomeric carbon (98.0 ppm), and for the C-3 and C-4 methylene groups (34.7 and 29.2 ppm).

Reduction of the α,β -unsaturated carbonyl system of the sugar enones, such as 3 and 4, should lead to the corresponding glycosides of 3,4-dideoxyhexopyranoses. Thus, compound 4 was reduced with an excess of sodium borohydride, and the product was acetylated to furnish cholestanyl 2.6-di-O-acetyl-3,4-dideoxy-α-Derythro-hex-3-enopyranoside (6) in 77% yield. The configuration of C-2 was assigned on the basis of the value (4.1 Hz) of $J_{1,2}$, which is characteristic of an axial-equatorial disposition of vicinal protons. Further confirmation of the stereochemistry of C-2 was obtained by hydrogenation of 6, which gave crystalline cholestanyl 2,6-di-O-acetyl-3,4-dideoxy-α-D-erythro-hexopyranoside (7). The signal for H-2 in the ¹H NMR spectrum of 7 appeared in a clear region, and thus $J_{2,3}$ (5.0 Hz) and J_{23} , (11.0 Hz) could be accurately measured and indicated the R configuration at C-2. The high diastereoselectivity observed for the reduction of the carbonyl group in 4 is most probably due to the stereocontrol exerted by the anomeric center on the hydride-addition on the vicinal carbonyl group⁷. The reduction of the glyculose derivative 3 was also highly stereoselective, and the crude product obtained by borohydride reduction of 3, was immediately hydrogenated to furnish 2-propyl 3,4-dideoxy- α -D-erythro-hexopyranoside (8) in 94% overall yield. As the ¹H NMR spectrum of 8 was rather complex, this compound was converted into the diacetate 9, whose spectrum showed coupling constants corresponding to the erythro relationship of the asymmetric centers.

^a Overlapped with C-cholestanyl. * Signals are interchangeable.

CH₂OAc
OCHMe₂
OAc

1

CH₂OAc
OCHMe₂
OAc
OCHMe₂
OAc
OCHMe₂
OAc

1

CH₂OAc
OCHMe₂
OAc
OR
ACO
OCHMe₂
OAc
OR

$$R^2$$
O

 R^2 O

 R^2 O

 R^2 O

 R^2 O

 R^2 O

 R^2 C

 R^2 C

Formule 1

In a parallel experiment, 2-propyl 3,4-dideoxy- α -D-erythro-hexopyranoside (8) was acetolyzed, giving rise to an anomeric mixture of 1,2,6-tri-O-acetyl-3,4-dideoxy-D-erythro-hexopyranosides, separable by HPLC, and affording the α anomer 10 as the main product. The ¹H and ¹³C NMR spectral data of 10 and 11, together with the measured optical rotation values, confirmed the anomeric configurations of both compounds.

EXPERIMENTAL

General methods-Melting points were determined with a Thomas-Hoover apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 141 polarimeter for solutions in $CHCl_3$. Column chromatography was performed on Silica Gel 60 (230-400 mesh, Merck). TLC was performed on aluminium sheets precoated with Silica Gel 60F (Merck), with the solvent systems: (A) 2:1 hexane-EtOAc, (B) 19:1 PhMe-EtOAc, and (C) EtOAc. Detection was effected by charring with 10% H_2SO_4 -EtOH. HPLC was performed with a Micromeritics

liquid chromatograph, equipped with a refractive-index detector, and using an Altech R-Sil C_{18} (50 × 1 cm) column and 1:1 acetone-water as the solvent at 1.2 ml min⁻¹. The NMR spectra were recorded in CDCl₃ with a Varian XL-100 (¹H, 100.1 MHz; ¹³C, 25.2 MHz) or with a Bruker AC 200 (¹H, 200 MHz) spectrometer.

2-Propyl 2,4,6-tri-O-acetyl-3-deoxy- α -D-ribo-hexopyranoside (2).—Compound 1 (0.33 g, 1 mmol) dissolved in dry MeOH (10 mL) was hydrogenated with 10% Pd-C (50 mg). When the consumption of H₂ ceased (16 h), TLC showed a single spot (R_f 0.37, A). The catalyst was filtered off and the filtrate concentrated affording syrupy 2 (0.28 g, 85%); [α]_D +132° (c 1). Anal. Calcd for C₁₅H₂₂O₈: C, 54.22; H, 7.23. Found: C, 54.48; H, 7.39.

2-Propyl 6-O-acetyl,3,4-dideoxy- α -D-glycero-hexopyranosid-2-ulose (5).—Hydrogenation of compound¹ 3 (0.16 g, 0.7 mmol) in MeOH (10 mL) under the conditions described for the hydrogenation of 1, gave the glycosidulose 5 (0.14 g, 87%); $[\alpha]_D + 103^\circ$ (c 1). Anal. Calcd for $C_{11}H_{18}O_5$: C, 57.38; H, 7.88. Found: C, 57.33; H, 7.70.

Cholestanyl 2,6-di-O-acetyl-3,4-dideoxy- α -D-erythro-hex-3-enopyranoside (6).—To a solution of compound² **4** (0.16 g, 0.28 mmol) in dry MeOH (10 mL) NaBH₄ (60 mg, 1.6 mmol) was added. After stirring for 4 h at room temperature, the mixture was made neutral with Dowex 50W (H⁺); the resin was filtered off, and the filtrate concentrated. The resulting syrup was dissolved in 1:1 Ac₂O-pyridine (2 mL) at 0°C, and the solution was kept overnight at 0°C. Methanol (2 mL) was added and toluene (3 × 15 mL) was evaporated from the mixture to remove pyridine. The residue showed a main product on TLC (R_f 0.27, B), which was isolated by column chromatography (8:1 hexane-EtOAc) and identified as **6** (0.13 g, 77%); [α]_D +63° (c 0.4). Anal. Calcd for C₃₇H₆₀O₆: C, 73.96; H, 10.16. Found: C, 73.70; H, 10.13.

Cholestanyl 2,6-di-O-acetyl-3,4-dideoxy- α -D-erythro-hexopyranoside (7).—A solution of 6 (60 mg, 0.1 mmol) in EtOAc (10 mL) was hydrogenated over 10% Pd–C (30 mg) for 24 h. The catalyst was filtered off and the solvent evaporated affording pure 7 (R_f 0.24, B), which crystallized from MeOH (55 mg, 87%); mp 91–92.5 °C; [α]_D + 94° (c 0.7). Anal. Calcd for C₃₇H₆₂O₆: C, 73.71; H, 10.37. Found: C, 73.37; H, 10.12.

2-Propyl 3,4-dideoxy-α-D-erythro-hexopyranoside (8).—To a solution of 3 (0.144 g, 0.63 mmol) in MeOH (10 mL), NaBH₄ (0.14 g, 3.7 mmol) was added. After stirring at room temperature for 24 h no starting material was detected on TLC, and the mixture was treated as described for the preparation of 6. The homogeneous (R_f 0.55, C) syrup (0.12 g) obtained was dissolved in MeOH (10 mL) and hydrogenated over 10% Pd-C (30 mg) as described previously affording syrupy 8 (0.11 g, 94%); [α]_D + 128° (c 0.8); R_f 0.50 (C). Anal. Calcd for C₉H₁₈O₄: C, 56.82; H, 9.54. Found: C, 56.68, H, 9.81.

2-Propyl 2,6-di-O-acetyl-3,4-dideoxy-α-D-erythro-hexopyranoside (9).—Compound 8 (0.09 g, 0.47 mmol) was treated with 1:1 Ac₂O-pyridine (4 mL) at 4°C for 20 h. Methanol (10 mL) was added and, after 30 min, the solvent was evaporated.

Pyridine was removed by repeated addition and evaporation of toluene. The product 9 (0.10 g, 80%) was isolated as a syrup; $[\alpha]_D + 133^\circ$ (c 1.6). Anal. Calcd for $C_{18}H_{22}O_5$; C, 60.45; H, 8.58. Found: C, 60.05; H, 8.86.

1,2,6-Tri-O-acetyl-3,4-dideoxy- α -D-erythro-hexopyranose (10) and its β anomer (11).—To a solution of crude 8, obtained from 3 (68 mg, 0.3 mmol) as described previously, in AcOH (6.5 mL), a cold mixture of Ac₂O (6.5 mL) and H₂SO₄ (0.4 mL) was slowly added at 0°C. The solution was kept at 4°C for 72 h and NaOAc (1.5 g) was added. The mixture was stirred for additional 30 min at room temperature, and concentrated. The residue was extracted with CH₂Cl₂ (3 × 50 mL), and the extract washed with sat 1 aq NaHCO₃ and satd aq NaCl, dried MgSO₄), concentrated and chromatographed on a silica gel column with 5:1 hexane-EtOAc. Fractions containing a single spot (R_f 0.56, A) were combined and evaporated to a syrup, whose ¹H NMR spectrum revealed the presence of both 10 and 11. This mixture was separated by HPLC using a reverse-phase column and acetone-water as solvent (see General methods).

The main product, $t_{\rm R}$ 14.4 min, was identified as the α anomer 10 (35 mg, 50.4%); $[\alpha]_{\rm D}$ +72° (c 0.6). Anal. Calcd for $C_{12}H_{18}O_7$: C, 52.55; H, 6.61. Found: C, 52.87; H, 6.84.

The minor product, t_R 13.7 min, was the β anomer 11 (11 mg, 16%); $[\alpha]_D - 13^\circ$ (c 0.3).

ACKNOWLEDGMENTS

We thank CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina) and the University of Buenos Aires for financial support, and UMYMFOR (CONICET-FCEN) for the microanalyses.

REFERENCES

- 1 O. Varela, G.M. De Fina, and R.M. de Lederkremer, Carbohydr. Res., 167 (1987) 187-196.
- 2 G.M. De Fina, O. Varela, and R.M. de Lederkremer, Synthesis, (1988) 891-893.
- 3 C. Altona and C.A.G. Haasnoot, Org. Magn. Reson., 13 (1980) 417–429.
- 4 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- 5 A.S. Perlin, M.T.P. Int. Rev. Sci. Org. Chem., Ser. 2, 7 (1976) 1-34.
- 6 A.F. Hadfield and A.C. Sartorelli, Carbohydr. Res., 101 (1982) 197-208.
- 7 F.W. Lichtenthaler, S. Nishiyama, P. Köhler, and H.J. Linder, Carbohydr. Res., 136 (1985) 13-26.
- 8 R.J. Ferrier, W.G. Overend, and G.H. Sankey, J. Chem. Soc., (1965) 2830-2836.